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Abstract 

 
This paper proposes a rational B-spline hypervolume that represents a volume object which has multiple attributes 

defined in a multidimensional space. This representation provides a mathematical framework for modeling and visual-
izing a multidimensional multivariate object as well as analyzing the object interiors to extract its intrinsic features that 
are directly inaccessible. We discuss the NURBS extension procedure showing that the proposed hypervolume is a 
generalized volume function not depending on the domain dimensionality and its range dimensionality. Useful expres-
sions arising in connection with a computational treatment are presented for geometric and mathematical analysis of a 
volume object based on the proposed hypervolume. We also describe the approximation and interpolation algorithms 
of the proposed hypervolume. Finally, we show various applications such as grid generation, flow visualization, im-
plicit surface modeling, and image morphing. They demonstrate the usefulness and the extensibility of the proposed 
hypervolume. 
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1. Introduction 

Many research groups in various areas have made 
efforts to model and analyze very large data sets effi-
ciently as well as to visualize the results effectively. 
Such efforts [1-4] include topics in flow visualization 
[5] in computational fluid dynamics, volume graphics 
in computer graphics, and scattered data modeling [6-
9] in CAGD community. 

These research efforts mainly aim to devise mathe-
matical principles, computational algorithms, and 
well-organized data structures, which transform mas-
sive volume data sets into meaningful pictures and 
other graphic representations that improve apprehen-
sion or inspiration. To achieve these goals, many 
modeling techniques and visualization tools have 

been integrated to some degree within a system. Few 
systems, however, provide a unified working envi-
ronment by which users can perform the modeling (or 
representation), analysis, and visualization of various 
types of volume data (e.g., heterogeneous materials, 
CT images, flow visualization). In other words, sys-
tem developers have difficulties in constructing a 
unified framework (independent of data complexities 
and domain dimensionality) that can support all types 
of volume models and various tasks. These difficul-
ties arise basically from the lack of generalized 
mathematical models that represent a wide range of 
volume data and carry out the existing volume visu-
alization or analysis techniques with their least modi-
fication. Needs for the generalized models can be 
found even in the historical evolution of volume 
models (refer to section 2). The evolving trend of 
volume object or models can be summarized as:  

 From discrete volume datasets to continuous func-
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tion models 
 From homogeneous solids to heterogeneous vol-

umes 
 From Boolean domain to real domain 
 From an one scalar field to a generic tuple of sca-

lar fields 
 From three-dimensional space to higher dimen-

sional space 
 From a single representation to a constructive 

modeling approach for complex objects 

From the facts above, the domain complexity and 
range complexity of a volume object need to be con-
sidered for multidisciplinary volume objects in vari-
ous applications. 

In general, a volume object is defined as a function 
ASV     : →  from a three-dimensional compact do-

main S to an attribute space A. That is, a volume object 
is composed of an infinite number of point particles in 
three-dimensional Euclidean space where each of the 
particles has multiple attributes as object properties 
depending on application purposes. Typical examples of 
attributes include geometric attributes (e.g., algebraic 
distance, rectilinear coordinates), physical field attrib-
utes (e.g., density, velocity, temperature, pressure), 
photometric attributes (e.g., color, opacity), and other 
application-dependent attributes. Here, the geometric 
attribute is often described by using the rectilinear coor-
dinates (x, y, z) in 3D Euclidean space as an essential 
element of the volume object, while the other attributes 
are mostly represented by real-valued scalar functions to 
define the intrinsic properties of the object varying 
across a region of the space. 

On the other hand, three-dimensional domain space 
of a volume object can be extended to so-called mul-
tidimensional space in which a multivariate volume 
object is described. Note that the term multidimen-
sional refers to the domain dimensionality of a vol-
ume space, while the term multivariate refers to the 
range dimensionality of volume attributes. Therefore, 
a generalized volume model has to represent a multi-
dimensional multivariate (in short, mdmv) volume 
object, called a hypervolume object in this paper. A 
typical example is discrete scalar fields embedded in 
D-dimensional spaces, which is discussed by Bajaj et 
al. [10]. The research topic of the mdmv was among 
one of the short-term goals included in the 1987 Na-
tional Science Foundation (NSF) sponsored work-
shop on Visualization in Scientific Computing [11]. 
Many attempts for effective and efficient mdmv visu-

alization techniques have been tried since then. How-
ever, there has been little work on developing a gen-
eralized volume model that fully represents a wide 
range of volume data sets without depending on a 
data dimensionality and distribution over a multidi-
mensional domain space. 

Hence, we introduce a rational B-spline hyper-
volume which represent a generalized volume object 
having K attributes in D-dimensional Euclidean space. 
It is a generalized form of NURBS [12] representa-
tion that has become the de facto industry standard for 
curve and surface description in the CAD community. 
The generalization process is carried out by extending 
the parametric space of NURBS to an arbitrary D-
dimensional space for multidimensional domain as 
well as the vector size of NURBS control point to an 
arbitrary number of K for multivariate attributes. That 
is, the volume representation model presented in this 
paper is the extension version of NURBS curves or 
surfaces to multivariate volume objects defined in 
multidimensional space. We expect this model to 
establish a mathematical framework that provides a 
foundation for representing and visualizing a general 
volume object. 
 

2. Related work 

Research in modeling a multidimensional multi-
variate object has been studied in various application 
areas. We present a brief survey here of volume mod-
els that have contributed to the volume modeling 
community on the order of complexity of a volume 
object. 

A discrete field volume is a sort of a finite set of 
volume elements each of which has a 3D spatial loca-
tion and a numerical data value, distributed over a 
bounded region of space. It has a topology and ge-
ometry to describe the connections between its ele-
ments. An advantage of the discrete volume is that it 
can represent heterogeneous volumes as well as regu-
lar solids. It is also relatively easy to directly render 
these types of objects [13, 14] using discrete ray-
casting. A disadvantage is the larger amount of mem-
ory overhead normally associated with this represen-
tation. 

A blobby object has been introduced to model and 
render electron clouds that surround their constituent 
atoms. Blinn [15] used exponentially decaying Gaus-
sian functions created by each atom, and defined the 
iso-surfaces for the identical electron densities by 



 S. Park / Journal of Mechanical Science and Technology 23 (2009) 1967~1981 1969 
 

summing the contributions from all fields of influence 
generated by each density function. 

An implicit surface represents a surface as the 
zero set of a real-valued scalar function f (x, y, z) = 0. 
In practice, an implicit surface or function is mathe-
matically defined such that it has first-degree continu-
ity. However, it is difficult to render them in their 
original form, and thus they are usually polygonized 
by using [16], for example, Marching Cubes [17]. 

Function representation (F-rep) is concerned 
with the geometric objects represented by closed sub-
sets of D-dimensional Euclidean space with the defi-
nition 0),,,( 21 ≥Dxxxf L  where f is a real-valued 
continuous function. The F-rep [18] modeling com-
ponents include the sets of objects, operations and 
relations. Algebraic surfaces, skeleton-based convolu-
tion surfaces, swept objects, volume dataset, and pro-
cedural models (such as solid noise) can be used as 
the primitive object. The set-theoretic operations, 
blending, offsetting, and other non-linear deformation 
are included in the modeling operations. And the 
relations describe the inclusion (binary), the point 
membership (in/boundary/out), and the intersection 
(collision) information. 

Complex objects are often made by recursively ap-
plying constructive operations and transformations to 
simpler ones. These building processes are repre-
sented as a hierarchical constructive tree that includes 
the non-terminal nodes for operators applied to their 
children and the terminal nodes for defining primi-
tives. Several major frameworks for building con-
structive representations of volume objects have been 
proposed: constructive solid geometry (CSG) [19], 
volumetric CSG [20], constructive volume geometry 
(CVG) [21], and constructive hypervolume modeling 
[22]. 
 

3. Rational B-spline hypervolumes 

3.1 Volume objects 

We first generally describe a volume object men-
tioned in many research groups before describing a 
rational B-spline hypervolume proposed in this paper. 

Let R denote the set of all real numbers, and DE  
denote D-dimensional Euclidean space. A general 
volume object o  (often called infinite spatial object) 
can be expressed as a generic tuple of K (> 0) scalar 
fields, if ),1( Ki L=  where RE     : →D

if . In 
other words, it is written as: 

( )Kfff ,,, 21 L=o   (1) 
 
where if is a real-valued function representing an i-
th attribute of a volume object distributed over D-
dimensional space. This volume object must be 
bounded if it is to be made practical in many applica-
tion areas. For this purpose, we define the bounded 
volume object as follows: 
 

( ))(,),(),( 21 pppo Kfff L= , DDD EΩΩp ⊂∈   ,  (2) 
 
where p and DΩ denote a D-dimensional point and a 
point set defined on the bounded space in DE . 

To facilitate volume modeling and rendering, the 
bounded point set is described by a parametric unit 
space and a space transformation function, T. Here, T 
is a mapping function from the parametric unit space 
to the original region DΩ . That is, 
 

)(uTp = , D]1,0[∈u   (3) 
 
where u is a point defined in the parametric unit space. 
Assuming D = 3, the space transformation from Car-
tesian coordinates to cylindrical coordinates can be an 
example of T. 

The rational B-spline hypervolume proposed in this 
paper satisfies Eqs. (2) and (3) for a general volume 
object. That is, it contains a generic tuple of K scalar 
fields, a parametric domain defined in D-dimensional 
space, and a mapping function for space transforma-
tion. The term “control point” of the rational B-spline 
hypervolume is used to describe K attribute fields and 
the term “knot vectors” corresponds to the D-
dimensional parametric domain. In fact, the product 
of “control point” and “B-spline function” behaves as 
an attribute function that combines a real-valued func-
tion f with a space transformation T (i.e., f (p) = f (T 
(u)). 

 
3.2 Definition and properties 

This section shows that the proposed rational B-
spline hypervolume is a generalized volume model 
function that represents a multivariate volume object 
embedded in multidimensional space. We first de-
scribe a simple parametric function defined in one-
dimensional space with an attribute and then extend it 
to the D-dimensional space with K attribute fields. A 
simple parametric function is defined as follows by 
the non-uniform B-spline function of order k in the u 
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direction. 
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This parametric function is now extended to a gen-

eralized volume function by two steps. One is to ex-
tend the function to have K attributes, and the other is 
the extension to a D-dimensional space. 

 Extension to multiple attributes 
The extension of Eq. (4) for multiple attributes is 

easily made by inserting a new control value to the 
control vector. Thus, the one dimensional parametric 
function with K attribute fields is written in the vector 
form like: 
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Note that  )(uA j ),,1( Kj L=  represents the j-
th attribute function among K attribute functions, and 

i
jA )(  describes the j-th attribute of the i-th control 

point of n control points. 

 Extension to multidimensional space 
The extension of Eq. (5) for multidimensional 

space is made by using tensor product schemes [23]. 
The extension steps for r and (r+1)-dimensional space 
(r = 1,L , D-1) are written as follows: 
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Thus, the multidimensional function with multiple 
attributes is written in the following vector form: 
 

∑=
I

II uNAuA )()(    (8) 

 

where ),,()( 1 Duu LAuA = , ∑ ∑∑=
1i iD

L
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In addition, Eq. (8) can be extended to a rational 
form as follows:  
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h
h , Ih is called a homo-

geneous coordinate and often used as a weight of the 
I-th control vector (or point).  

Therefore, we achieve a rational B-spline hyper-
volume that has multivariate attributes distributed 
over a bounded region of multidimensional parameter 
space, which is given by: 

 
3.3 Definition of a rational B-spline hypervolume 
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where ),,1( Diui L=  is the i-th parameter to define 

a D-dimensional volume space and  ),,( 1 D
j uuA L  

),,1( Kj L=  represents the j-th attribute function 
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among K attribute functions. ni and ki are the number 
of control points and the order of the B-spline basis 
function along the ui parametric direction, respec-
tively. 

Dii
jA L1
)(  describes the j-th attribute of the (i1 , 

i2 , …, iD )-th control point of Dnnn ××× L21  con-
trol points. 

Diih L1
is a homogeneous coordinate and 

)( i
k
i uN i
i

 denotes the normalized B-spline basis func-

tion of order ki defined on the knot vector in the ui 
direction. Knot vectors for D-dimensional parametric 
domain of Eq. (10) are defined as follows. 
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As a special case of Eq. (10), NURBS curves (or 

surfaces) used in CAD/CAM applications can be 
easily derived from Eq. (10). Applying D = 1, u = t, K 
= 3, and ),,( iii zyx=IA  to Eq. (10), the rational B-
spline hypervolume is simplified into a NURBS curve 
as shown in Eq. (11).  
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Applying D = 2, u = (u, v), K = 3, and 

),,( ijijij zyx=IA  to Eq. (10), we obtain a NURBS 
surface as shown in Eq. (12).  
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From this, we can achieve a NURBS volume by us-
ing D = 3, u = (u, v, w), K = 3, and ),,( ijijij zyx=IA . 
Furthermore, we are able to build a general purpose 
fluid flow visualization model [24], a NURBS vol-
ume with multiple flow attributes. 

The proposed B-spline hypervolume has several 
advantageous properties as follows, which should be 

taken into account for a generalized volume represen-
tation: 

 
•  Multidimensional objects: It describes a volume 

object existing in multidimensional space. In other 
words, it defines the D-dimensional (D > 0) volume 
space where D denotes the domain dimensionality. 
The parameter space of a rational B-spline hyper-
volume corresponds to the volume space in which a 
volume object exists. 

•  Multivariate objects: It represents an arbitrary 
number of heterogeneous attributes distributed in-
side a volume object. That is, it contains K (K > 0) 
attributes where K indicates the range dimensional-
ity. The control point of a rational B-spline hyper-
volume corresponds to the attributes of a volume 
object. 

•  Independence of mathematical property: It has no 
constraints regarding to the mathematical natures of 
attribute such as scalar, vector, and tensor, and is 
not dependent on the numerical types such as Boo-
lean, integer, real, and so on. For example, assum-
ing a volume model needs to represent tempera-
tures, fluid velocities, and stresses at the same time, 
temperature (a scalar) can be represented by 1A , 
fluid velocity (a vector with three attributes) by 2A , 

3A , 4A , and stress (a tensor with six attributes) 
by 5A  to 10A  in Eq. (10). 

•  A variety of applications: It provides a mathemati-
cal foundation for geometric modeling, volume 
visualization, and engineering analysis conducted 
in many applications. For example, it enables us to 
compute various differential elements and deriva-
tive operators which are frequently required for 
geometric analysis and feature-based visualization. 
Application examples in section 5 show its capa-
bilities to be used for various applications. 

•  Inheritance from NURBS: It has many useful prop-
erties studied in the previous NURBS literature [12, 
25]: convex hull property, affine invariance, varia-
tion diminishing property, and local modification, 
etc. We can also make use of NURBS-based algo-
rithms like degree reduction, degree elevation and 
knot insertion for a rational B-spline hypervolume 
without a special modification. Note that this in-
heritance is not related to a generalized volume. 
But this allows a fast and robust numerical compu-
tation, which has been already proved in NURBS 
literature. 
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4. Construction techniques by data fitting 

4.1 Approximation of scattered data 

In this section, we will introduce the approximation 
algorithm that constructs a rational B-spline hyper-
volume A(u) with L control points from the irregu-
larly scattered data point set { }iP  of size M. The 
basic ideas of the algorithm come from least squares 
and pseudo-inverse (or Moor-Penrose generalized 
inverse) techniques. We assume that all knot vectors 
of a rational B-spline hypervolume are uniform and 
all homogeneous coordinates are 1.0. (hI = 1.0) 

The approximation algorithm presented in this pa-
per is classified into two categories: over-determined 
constraint problem and under-determined constraint 
problem. In the former case, the number of the given 
data points is greater than the number of the unknown 
control points AI (i.e., M > L) and vice versa in the 
latter case. To derive the computation algorithm in 
each constraint problem, we select Eq. (13) as the 
proposed hypervolume model, which is a non-rational 
form for simple description. 
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where the number of control points AI is 

DnnL ××= L1 , and the index I of AI is given by 
 

DD inninnini ⋅++⋅+⋅+= − )()()( 11321211 LLI  
 

Both constraint problems can be formulated as one 
matrix form shown in Eq. (14). When the data points 

iP )1,,0( −= Mi L  and the corresponding parame-

ter coordinates ),,( 1
i
D

i uu L  )1,,0( −= Mi L  are 
given and substituted into Eq. (13), the following 
matrix equation can be obtained after some manipula-
tion.  
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or  
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where { }iP  represents the data point vector of size 
M and { }IA  denotes the control point vector of size 
L. Also, 1

11 2 1( , , , ) ( ) ( )D
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and [ ]i
IN  is a LM ×  matrix. 

 
4.1.1 Over-determined constraint problem 
Applying least-squares technique to determine the 

unknown { }IA , we obtain the following Eq. (15) for 
over-determined constraint problem (i.e., M > L). 
 

[ ] { } [ ] [ ]{ }IIII ANNPN iTi
i

Ti =    (15) 
 
After some manipulation of Eq. (15), we can get 
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where 1,,0 −= LLI , 1,,0 −= LLJ . 

The matrix [ ]IJa  shown in Eq. (16) is symmetric 
and positive semi-definite, so that we can obtain the 
unique solution of Eq. (16). In other words, the un-
known control points { }IA  are uniquely determined. 

 
4.1.2 Under-determined constraint problem 
Applying the pseudo-inverse technique to deter-

mine the unknown { }IA , we get the following Eq. 
(17) for the under-determined constraint problem (i.e., 
M < L). 
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where [ ][ ]Tii
II NN  is symmetric and positive semi-

definite because it can be rewritten as Eq. (18). 
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where 1,,0 −= Mi L , 1,,0 −= Mj L . Substitut-
ing { }jQ  to Eq. (17), we then obtain the following 

Eqs. (19) or (20) by which the unknown control 
points { }IA  are determined. 
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Based on the approximation algorithm above, a B-

spline hypervolume can be generated from scattered 
volume data. We can then approximately extract vol-
ume information at an arbitrary position within the 
scattered volume data for further analysis. We often 
refer to this generation technique as scattered data 
modeling [26]. 

Fig. 1 shows that the proposed B-spline hyper-
volume enables one to accomplish 3D surface fitting 
by the approximation algorithm explained above. Fig. 
1-(a) to (c) present the construction examples of ana-
lytic surfaces (i.e., plane, cylinder, and torus, respec-
tively) as the over-determined constraint cases, where 
M = 500 is used for each example, and n1 = n2 = n3 = 
2, k1 = k2 = k3 = 2 is used for plane surface, n1 = n2 = 4, 
n3 = 2, k1 = k2 = 4, k3 = 2 for cylinder surface, and n1 = 
n2 = n3 = 5, k1 = k2 = k3 = 5 for torus surface. Fig. 1-
(d) shows the freeform surface example as the under-
determined case where M = 56, n1 = n2 = n3 = 4, and 
k1 = k2 = k3 = 4 are used. In the next section, we de- 
 

  
             (a) Plane surface                (b) Cylinder surface 
 

  
              (c) Torus surface                 (d) Freeform surface 
 
Fig. 1. 3D surface fitting examples constructed by the pro-
posed B-spline hypervolume. 

scribe an interpolation algorithm that generates a B- 
spline hypervolume from grid-structured volume data. 

 
4.2 Interpolation of structured data 

Once a data set { }
Dii L1P  (an array of 

Dmmm L×× 21  points) of a D-dimensional struc-
tured grid is given, a rational B-spline hypervolume is 
constructed by the following interpolation algorithm. 
Assuming that all homogeneous coordinates equal 1.0, 
we can develop the following equations for deriving 
the interpolation algorithm. That is,  
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where 

DD iiii LL 11
0 AA =   (22) 

∑
−

=

=
−

1

0

01 )()(
111

D

D

D
DDD

n

i
D

k
iiiDii uNu LL AA   (23) 

……… 

∑
−

=

−− =
1

0
23

2
2

1
2

2

2
2211

)(),,(),,(
n

i

k
iD

D
iiD

D
i uNuuuu LL AA   (24) 

We first determine the D knot vectors of 
),,( 1 Duu LA  from the structured volume data. Here, 

the knot vectors are all nonperiodic (and nonuniform), 
which are expressed as the following one-
dimensional arrays, { } 1

0
)1(

1
111

11

−+=

=
=

kni

iitU , … , and 

{ } 1

0
)( −+=

=
= DDD

DD

kni

i
D

iD tU . Let us obtain the first knot vector 

1U  by the following way. Consider the i1-directional 

data array { } 1
0
11

121

−=

=

ni
iiii DLP  for each of the cases { (i2, 

i3,L , iD)} where [i2 = 0,L , n2-1], [i3 = 0,L , n3-
1],L , and [iD = 0,L , nD-1]. That is, we can imagine 
the Dnnn ××× L32  virtual B-spline curves along 
the i1 direction. For each i1-directional data array (or 
each of Dnnn ××× L32  virtual curves), we compute 

{ } 1
0 

111

121
 −+=

=

kni
iiii D

c L
 (or the knot vector of each virtual 

curve) by using the parameterization technique intro-



1974  S. Park / Journal of Mechanical Science and Technology 23 (2009) 1967~1981 
 

duced by Hartley-Judd [27]. Then we obtain 
{ } 1

0
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iitU  by averaging them as follows: 
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By the same way, we can obtain the other knot vec-
tors U2,L , UD along each direction. Next, from the 
knot vectors computed above, we determine the Gre-
ville abscissa, { }),,,( 

21 Diii xxx L , corresponding to 
the data points { }

Dii L1P ; they are computed by 
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Now let us calculate the control points 

Dii L1A  
from the Greville abscissa { }),,,( 

21 Diii xxx L  com-
puted in Eq. (26) and the corresponding data points 
{ }

Dii L1P . At first, substituting the Greville abscissa 
and their data points into Eq. (21), we get 
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Computing the unknown ),,(

21
1

Dii
D
i xx L−A  from 

Eq. (27) and then substituting them into Eq. (24), we 
obtain 
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In the same way, we determine the unknown 

),,(
321

2
Dii

D
ii xx L−A  from Eq. (28). Repeating this for 

Eq. (23) and (22) step by step, we finally get the last 
control points

Dii L1A . 
 

5. Applications of a rational B-spline hypervolume 

5.1 Numerical grid generation 

The FDM method is well known as a numerical 

analysis technique most widely used in CFD applica-
tions. The bottleneck in the FDM is the grid genera-
tion that produces the structured mesh or curvilinear 
point set. There have been many researches for im-
proving robustness and performance during grid gen-
eration. The Poisson-type elliptic grid generation 
method [28] is a well-known numerical technique in 
which the Poisson-type partially-differential equa-
tions are repeatedly calculated by using iterative re-
finement techniques. This method is referred to as 
numerical grid generation technique [29] since it con-
structs a grid mesh by moving the finite grid points to 
satisfy the partially-differential equations. In other 
words, this is a kind of grid mesh smoothing tech-
nique in which each point of the initial grid mesh 
moves toward desirable directions according to the 
property of the elliptic partially-differential equations. 
Note that an initial grid mesh should be given for the 
numerical generation of the final grid mesh. 

Fig. 2 shows initial grid meshes around an airplane, 
which are generated based on the hypervolume model 
shown in Eq. (29). In fact, three instances (i.e., hyper-
volumes) of Eq. (29) are first constructed by the in-
terpolation algorithm in section 4.2 with input points, 
sampled from 3D Euclidean space around the airplane. 
A set of parametric points (u, v, w) shown in Fig. 2- 
(a) are then uniformly sampled from the parametric 
domain of Eq. (29). Next, the grid points (i.e., nodal 
points) of each grid mesh are obtained in 3D Euclid-
ean space by simply evaluating Eq. (29) at all para-
metric points. 

One grid mesh is generated from the instance 
around the airplane body, the others around its two 
wings. Only two sections of each grid mesh are 
shown in Fig. 2-(b), which are iso-parametric surfaces 
calculated from Eq. (29). 
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Note that Eq. (29) maps a bounded parametric cube 

(represented by u, v, and w in E3 (D = 3)) onto a cur-
vilinear space where point particles are distributed 
and measured by three geometric attributes, x, y, and z 
(K = 3). 
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(a) 3D parametric space 

 

 
(b) 3D Euclidean space 

 
Fig. 2. Grid-structured meshes. 
 
5.2 Flow visualization 

Computational flow visualization has been carried 
out by depicting flow vector field with arrow plots, 
streamlines, or particle traces. In 2D cases, these 
graphical methods can be effective to some extent; in 
3D cases, however, such visualization can be illegible 
so that we are likely to overlook flow features or cha-
racteristics such as a vortex flow. This is because such 
techniques only focus on the graphical visualization 
of flow data without extracting important characteris-
tics implied in the flow data. 

To comprehend the flow phenomenon in detail, we 
thus focus on developing a procedure called feature 
segmentation algorithm and its graphical techniques 
[30], which can draw out a characteristic phenome-
non from the huge amount of flow data. Developing 
such algorithms or techniques for analyzing and visu-
alizing fluid flow data requires constructing the flow 
representation models as like [24]. 

A rational B-spline hypervolume allows us to build 
such flow representation models. It can provide com-
putable analysis tools for feature segmentation algo-
rithms while supporting the former visualization 
techniques. The flow representation model based on 

the B-spline hypervolume can be represented by Eqs. 
(29) and (30). 
 

( )∑=
I

II uRVuA )( , , , ,)( Tflow pT Lρ   (30) 

 
where )(uA flow  describes the distribution of flow 
field variables (or attributes) in the geometric region 
described by Eq. (29). The ρ, V, T, and p in Eq. (30) 
indicate the density, velocity vector (three attributes), 
temperature, pressure of the fluid flow, respectively. 
Here, components of a control point in Eq. (30) can 
be replaced with other flow variables. Note that the 
two models (Eqs. (29) and (30)) can be merged into 
one model with nine attributes (K = 9 = 3+6) by tak-
ing (x, y, z, ρ, V, T, p, …)T as the merged control 
point if the knot vectors of Eq. (29) are exactly the 
same as those of Eq. (30). However, it is not recom-
mended to merge models if there is a difference be-
tween the geometric complexity and the attribute 
complexity (e.g., a complex flow in a simple domain). 

We now introduce one of the feature parameters 
used for analyzing a flow structure, and show its 
computable form based on the proposed hypervolume 
models, Eqs. (29) and (30). The gradient of a flow 
velocity V around the critical point in a flow field, i.e., 

V∇ is a key parameter used frequently for the extrac-
tion of flow features or characteristics. By using its 
eigenvalues and eigenvectors [31, 32], we often in-
vestigate a topological structure of a flow field at a 
certain position. V∇ can be calculated from the fol-
lowing expansion shown in Eq. (31). 
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From above, we finally obtain the computable equa-
tion for V∇ , 
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Here, two terms, jV  and 
k

i

u
V
∂
∂  of Eq. (32), can 

be easily computed by deBoor algorithm since they 
are the zeroth and the first order derivatives of the 
hypervolume model proposed in Eq. (30), respec-
tively. 

Figs. 3 and 4 show the streamlines and stream-
surfaces around a curved fan and a blunt fin, respec-
tively, which are typical examples of feature segmen-
tation for feature-based visualization. In these figures, 
the starting curve of the stream-surfaces is a line and 
the line becomes curved along its trajectory. The 
curved trajectory is extracted from the rational B-
spline hypervolumes, Eqs. (29) and (30). Although 
each control point has more than six attributes (x, y, z, 
Vx, Vy, Vz), we only show the distribution of velocity 
vectors (each velocity vector has three attributes, Vx, 
Vy, Vz) around the fan in Figs. 3 and 4. Different col-
ors are used to represent the magnitude of velocity 
vectors. In addition, Fig. 4 shows a vortex flow (flow 
feature) at the contact between the fin and the floor. 
This vortex feature can be also extracted from the 
proposed hypervolume models. These examples show 
that the proposed hypervolume models enable one to 
compute and visualize flow features, implied in a 
discrete flow data. 

 

 
 
Fig. 3. Stream-surfaces around a curved fin. 

 
5.3 Implicit surface modeling 

On the basis of the proposed rational B-spline hy-
pervolume, we are able to conduct various implicit 
surface modelings. Even though a B-spline hyper-
volume is definitely a parametric representation, it 
behaves as an implicit surface. This is because we can 
judge the inside, the outside, and the boundary of an 
object at an arbitrary position by using the sign of the 
B-spline hypervolume. That is, an implicit surface 
can be expressed as the following B-spline hyper-
volume model. 
 

( )∑=
I

II uRuA )( , , ,)( Timplicit dzyx   (33) 

 
where Id  is a distance-like scalar value, typically 
called an algebraic distance. 

A discrete volume data is first constructed by eva-
luating signed distance values at sample points ran-
domly chosen around the implicit surface. A positive 
distance value is assigned to the point inside the sur-
face, a negative value to the point outside, and a zero 
value to the boundary point. A B-spline hypervolume 
model of Eq. (33) is then generated from the volume 
data by applying the approximation method proposed 
in section 4.1. We now can distinguish the sign of the 
distance value at an arbitrary position and thus deter-
mine whether it is inside, outside, or on the target 
object. Furthermore, Eq. (33) can sufficiently describe 
level set surfaces [33] which would be a generalized 
form of an implicit surface, as shown in Fig. 5. 

The level set surfaces of a sphere shown in Fig. 5 
are generated by the following procedure. At first, we 
sample the data points which are randomly scattered, 

 

  
(a) Streamlines 

  
(b) Stream-surfaces 

 
Fig. 4. Stream-surfaces around a blunt fin. 



 S. Park / Journal of Mechanical Science and Technology 23 (2009) 1967~1981 1977 
 

and determine the signed distance value at each point 
from the distance between the point and the center of 
the sphere. And then we generate the B-spline hyper-
volume model of Eq. (33) from the sampling points 
and their distance values. Finally, we extract the level 
set surfaces at certain levels from the generated hy-
pervolume model and visualize them by means of 
marching cubes algorithm [17]. 

The set-theoretic operations are the primary tasks 
of the implicit surface modeling. These operations are 
concerned with the construction of the union, the 
intersection, or the difference between two implicit 
surfaces where each operation is principally defined 
by simple algebraic relations [18]. Modeling tasks 
described frequently in the field of implicit surfaces 
can be easily accomplished with the B-spline hyper-
volumes defined by Eq. (33). Fig. 6 illustrates typical 
examples of the union, the intersection and the differ-
ence between two spheres shown in Fig. 5. The union 
object shown in Fig. 6-(a) is expressed by a construc-
tive tree like CSG or F-rep in which the terminal 
nodes contain the implicit spheres shown in Fig. 5 
and the root node includes the union operator [18]. 

From the results so far, we make sure that a rational  
 

  
 
Fig. 5. Level set surfaces of a sphere shape. 
 

 
              (a) Union                            (b) Intersection 
 

 
(c) Difference 

 
Fig. 6. Set-theoretic operations between two spheres. 

B-spline hypervolume is a novel representation to 
participate in implicit surface modeling. This is be 
cause it behaves as an implicit surface even though it 
is a parametric representation model. 

 
5.4 Image morphing 

Image morphing [34] is a procedure that makes and 
shows the intermediate images existing between two 
input images sequentially, by appropriate image mod-
ification and mixture. Generally, we call it image 
metamorphosis, which is well known for the special 
visualization effects in a movie and TV. 

In this paper, we propose an image morphing tech-
nique based on the popular mesh warping algorithm 
[35], in which the image modification and the mixture 
between two images are represented and manipulated 
by a rational B-spline hypervolume representation. 
Following is the procedure of this work. We first 
choose some distinctive points on two input images, 
source image and target image, and define the corre-
sponding relation between each pair of them. These 
relations are then used as input data to generate a 
space mapping function of Eq. (34) by the interpola-
tion algorithm described in section 4.2. 
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where s and t are subscripts denoting the source and 
the target images, respectively. (x, y) denotes the im-
age pixel coordinates, and u = (u, v) denotes the pa-
rametric domain of two images. Note that the input 
data is given in the form of 6-dimensional array, 
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where (u, v)i is the data position of Eq. (34) and (xs, ys, 
xt, yt)i is its function value. The space mapping func-
tion of Eq. (34) is used to define a mutual mapping 
between the source pixel coordinates and the target 
ones. The parameters (u, v) are first searched from 
either of the two pixel coordinates, and then the other 
pixel coordinates are obtained by evaluating Eq. (34) 
at the searched parameters. We set (u, v) = (xt, yt) for 
fast computation. 

Next, warped images are obtained by the space 
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mapping explained above, and then both the un-
warped and warped images are interpolated to make 
the image warping function shown in Eq. (36). 
 

( )∑=
I

II uRuA )( , , , , , ,)( Twarping bgrzyx α
 

 (36) 

 
where r, g, b denote the colors of the images, and α 
denotes the opacity value. The images before and 
after modification are located at z = 0 and z = 1, re-
spectively. The parameters (u, v) in the u = (u, v, w) 
of Eq. (36) are used to represent the 2-D image plane, 
while w is the parameter denoting the modifying di-
rection of the image. For example, when 10 ≤≤ w  
in Eq. (36), warpingA  (u, v, w = 0.5) shows the inter-
mediate image between the before image (w = 0) and 
the after image (w = 1). 

We generate the image warping function from each 
of two input images, and then produce the final 
morphing function of Eq. (37) by the weighted sum 
of the two image warping functions. 
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(37) 

 
where )(uAwarping

s  and )(uAwarping
t  are the image 

warping functions that define the image warping of 
the source and the target, respectively. w is a weight-
ing factor for the weighted sum and the direction of 
morphing process at the same time. 

Fig. 7 shows the primitive form of image morphing. 
Some successive cross-sectional images of the 
morphing function are shown when the source and 
the target images are linearly interpolated without the 
image warping achieved by Eq. (34) and (36). It is 
clearly shown that the two images are overlapped at 
the middle of the process while progressing from the 
top-left to the bottom-right. 

Fig. 8 illustrates the whole process of image 
morphing by Eqs. (34), (36) and (37). The images in 
the first and the second rows show the warping of the 
source image that progresses from left to right in Fig. 
8, while the images in the fourth and the fifth rows 
show the warping of the target image that progresses 
from right to left in Fig. 8. Here, the white grids on 
the images denote the input data, shown in Eq. (35), 
of which warping progress is also displayed together. 
The images in the third row show the weighted aver-
age of the warping images in the second and the 
fourth rows by Eq. (37), which is the final process of  

 
 
Fig. 7. Image morphing without image warping. 

 

 

 

 

 

 
 
Fig. 8. Image morphing with image warping. 

 
the image morphing. 

As mentioned above, a rational B-spline hyper-
volume can produce the morphing images existing in 
the 3-D parametric space, which consists of 2-D im-
age space and 1-D morphing (or warping) direction. 
That is, it is said that the former descriptive algorithm 
of image morphing can be formulated and calculated 
by a rational B-spline hypervolume in a mathematical 
way. 
 

6. Conclusions 

This paper presents a rational B-spline hyper-
volume representation that is capable of describing a 
closed volume object with K attributes embedded in 
D-dimensional space. We also propose approximation 
and interpolation algorithms for generating a rational 
B-spline hypervolume from the given volume data 
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distributed over a multidimensional space. In addition, 
useful expressions for computing differential ele-
ments and derivative operators are derived (not pre-
sented in this paper) to figure out the complex struc-
ture of general volume objects. 

Moreover, we show that a rational B-spline hyper-
volume can be utilized as modeling and analysis tools 
applicable to various applications. The example of 
grid generation shows that the rectilinear parameter 
space of a B-spline hypervolume is mapped into 3D 
curvilinear coordinates so that grid meshes can be 
easily generated. The example of flow visualization 
proves that a B-spline hypervolume is a good mathe-
matical tool by which the flow features or characteris-
tics can be analyzed and visualized. The example of 
implicit surface modeling provides the possibility 
toward a dual representation in both implicit and pa-
rametric forms. The example of image morphing 
shows the capability to represent a warping and 
morphing process. 

After all, we make sure that a rational B-spline hy-
pervolume is a generalized volume representation 
without any dependence on specific applications and 
is capable of carrying out the modeling, analysis, and 
visualization of a multivariate volume object defined 
in a multidimensional space. 

As a future research topic, we need to study hierar-
chical structures based on a rational B-spline hyper-
volume to represent and manage the partially local 
complexity or the multiresolution of a volume object 
effectively. Now, we are examining the wavelet-type 
multiresolution model by using a knot insertion algo-
rithm based on a rational B-spline hypervolume. In 
addition, we are carefully inspecting that the proposed 
hypervolume can be used as a solution structure for 
meshless methods [36, 37] and meshfree modeling 
and simulations [38]. That is, we are investigating 
that a rational B-spline hypervolume could offer an 
approximate solution to governing differential equa-
tions (or equivalent variational form) as an admissible 
trial function for boundary-value problems. Substitut-
ing a rational B-spline hypervolume into the differen-
tial equation where the B-spline hypervolume satis-
fies the boundary conditions, we could derive the 
error residuals formulated with the unknown control 
points of the rational B-spline hypervolume. Here, the 
geometric part of the control point would play the role 
of a nodal point of a mesh element [39], and the field 
variables at each node could be represented by the 
non-geometric part of the control point. 
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